Non-abelian tensor product and homology of Lie superalgebras
نویسندگان
چکیده
منابع مشابه
The non-abelian tensor product of normal crossed submodules of groups
In this article, the notions of non-abelian tensor and exterior products of two normal crossed submodules of a given crossed module of groups are introduced and some of their basic properties are established. In particular, we investigate some common properties between normal crossed modules and their tensor products, and present some bounds on the nilpotency class and solvability length of the...
متن کاملKostant Homology Formulas for Oscillator Modules of Lie Superalgebras
We provide a systematic approach to obtain formulas for characters and Kostant u-homology groups of the oscillator modules of the finite dimensional general linear and ortho-symplectic superalgebras, via Howe dualities for infinite dimensional Lie algebras. Specializing these Lie superalgebras to Lie algebras, we recover, in a new way, formulas for Kostant homology groups of unitarizable highes...
متن کاملFiniteness of a Non Abelian Tensor Product of Groups
Some su cient conditions for niteness of a generalized non abelian tensor product of groups are established extending Ellis result for compatible actions The non abelian tensor product of groups was introduced by Brown and Loday following works of A Lue and R K Dennis It was de ned for any groups A and B which act on themselves by conjugation y xyx and each of which acts on the other such that ...
متن کاملNon-standard matrix formats of Lie superalgebras
The standard format of matrices belonging to Lie superalgebras consists of partitioning the matrices into even and odd blocks. In this paper, we study other possible matrix formats and in particular the so-called diagonal format which naturally occurs in various applications, e.g. in superconformal field theory, superintegrable models, for super W -algebras and quantum supergroups. † UMR 8514, ...
متن کاملHom-Lie Superalgebras and Hom-Lie admissible Superalgebras
The purpose of this paper is to study Hom-Lie superalgebras, that is a superspace with a bracket for which the superJacobi identity is twisted by a homomorphism. This class is a particular case of Γ-graded quasi-Lie algebras introduced by Larsson and Silvestrov. In this paper, we characterize Hom-Lie admissible superalgebras and provide a construction theorem from which we derive a one paramete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2015
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2015.05.027